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Abstract

Sentiment Analysis is the subject matter of analyzing a sequence of text as an input and
predicting if the input’s sentiment is of some sort of classification. Tackling the problem of
sentiment analysis, there are many ANN-based approaches to it. With so many competing
approaches a question must be asked, how do these ANN-based approaches compare among
each other on accuracy when tasked with sentiment analysis? The motivation to ask such a
question would be for us to obtain more of a baseline understanding of these approaches and then
be able to make some decision on what type of approach to choose in a practical implementation
of them. So in answering this question, a dataset of over 20,000 tweets already labeled positive,
negative, or neutral was employed. And after a preprocessing cleaning step on the tweets,
different ANN models employing different underlying methods were built up and trained. There
were three approaches tested: a Simple RNN approach, a Single Layer LSTM approach, and a
CNN approach. After building up the experiment and collecting the results, the LSTM approach
showed the most promise with the highest score of accuracy correctly classifying text 0.8326%
of the time. It is reasonable to conclude that because of the unique feature of the LSTM to
remember long term dependencies that it would perform better to the other two naive ANN
approaches in sentiment analysis.

Introduction

Over the past many years, we have seen a huge increase of interest in social media sites
like Facebook, Twitter, and LinkedIn. People have realized that these social media sites have the
opportunity to be an invaluable source of information that allows them to obtain quick public
opinion of their product and services. However, because of the very large number of posts and
users, accurately tracking an individuals’ sentiment of a product/service can be terribly complex.
Still though, machine learning methods are capable of giving automated ways to obtain useful
information from all these various sources.

The objective of my research is to use ANN approaches to accurately classify any online
comment into either a “positive”, “negative”, or “neutral” sentiment. This idea is known as
sentiment analysis and could be very useful for people wanting to gauge the general sentiment of
practically anything. In my research I look to compare the accuracies of a simple RNN model, a
single layer LSTM model, and a CNN model.

There have been other papers individually covering the RNN[1], LSTM[2], and CNN[3]
that specifically look at their applicability for language modeling. In my research however, I
wish to cover more of an overview of the three and specifically compare their results on accuracy



between each other. On another significant note, as compared to [4] that also performs a
comparison of different ANN approaches in sentiment analysis, I am using the Keras library as
opposed to developing the networks from scratch. I believe such a difference will significantly
increase the accuracy of my results as compared to theirs because of the optimization efforts
spent on such a large library like Keras.

For conducting this research, I used a dataset of 20,000 tweets labeled already as positive,
negative, or neutral. By having such a labeled dataset, it will provide the supervised learning
medium in which the three models to be tested will learn from. However before being able to
learn from this dataset, some pre-processing must be done on the dataset for it to be usable by the
models. This pre-processing includes a text cleaning step that gets rid of unnecessary text
characters and a transformation step that turns the cleaned text into word embeddings, creating
usable word vectors for the models. With the pre-processing now taken care of, we then build up
three separate models of our three approaches using the Keras library.

Now having built up this experiment, the models’ accuracies were tested. From the
results that were collected, it was found that the LSTM model performed the best with an
average accuracy of 0.8351%, followed by the CNN model with an average accuracy of
0.8326%, and lastly the RNN model with an average accuracy of 0.8255%. Another interesting
statistic was that the accuracy for neutral sentiment prediction was of a significant margin higher
than positive or negative sentiment prediction (around 10% higher).

From these results, it can be concluded that the difference in accuracy between these
models was honestly pretty insignificant. This thus begs the question as to how overall accuracy
could be affected by the dataset. The used dataset was found to have many more neutral
sentiment labels as compared to the negative  and positive sentiment labels. Such a difference
could perhaps favor the accuracy outcomes of other approaches more than others, and perhaps
this was the reason why neutral sentiment was easier to predict than positive or negative
sentiment.

Approach

To build up this experiment, you absolutely need two things: input data and a model to
make sentiment predictions. These models need correctly formatted input to perform the
supervised learning needed to adjust its neuron’s weights to improve its future ability to make
sentiment predictions. In order to get this correctly formatted input though, we have to start from
a source. Our source comes from a dataset from Kaggle titled “ Sentiment Analysis: Emotion in
Text tweets with existing sentiment labels”. The dataset includes 20,000 tweets that have been
labeled as either positive, negative or neutral. Upon closer inspection of the variability within
these labels, it is found that 11,111 tweets are labeled as neutral, 5,537 as positive, and 5,861 as
negative. Now to make these labeled tweets into correctly formatted input for our sentiment
analysis models, we will first need to clean them. In this data cleaning we will be: removing
URLs from the tweets, Tokenizing text, removing emails, removing new line characters,



removing distracting single quotes, removing all punctuation signs, lowercasing all text,
detokenzing the text, and converting the list of texts to a Numpy array. Then after this cleaning
we will transform the text into word embeddings, which consists of a label encoding step, and a
data sequencing and splitting step. Now finally, we will build up three models that are built using
the Simple RNN, the LSTM, and the CNN approaches by using the Keras library. We now have
the correctly formatted input and three distinct models to train. After running 20 training epochs
on all the models, we compare the accuracies among them by using a confusion matrix. Here a
confusion matrix is just a table that is often used to describe the performance of a classification
model on a set of test data for which the true values are known. With the results collected, we
have now completed the experiment.

Cleaning

To get into a bit more of specifics with my experiment, it begins with the collection of a
twitter dataset with over 20,000 tweets that are already labeled as either positive, negative, or
neutral. With this dataset, I needed to transform the text into something a computer could
understand. Computers are only able to understand floating point data, so this transformation
step is required. Though before performing any transformation to our text, it must be cleaned.
This cleaning process will remove nonessential text like URLs, emails, new line characters, and
single quotes that get in the way of the transformation. The cleaning step will change the text like
on the left to something like the text on the right.

Implementing something like the code below will accomplish some of this basic cleaning.

After this step, we will have successfully cleaned our noisy textual dataset into a much simpler
one.



Label Encoding and Data Sequencing/Splitting

As the dataset is categorical, we need to convert the sentiment labels from positive,
negative, and neutral to a float type that our model can understand. To achieve this task, we’ll
implement the to_categorical method from Keras.

Then, we’ll implement the Keras tokenizer as well as its pad_sequences method to transform our
text data into 3D float data, otherwise our neural networks won’t be able to be trained on it.

Word Embeddings Layer

We will now transform our sentences into word embeddings. These word embeddings are
floating point vectors that have information of that particular word packed into a few
dimensions. In our experiment we will learn these word vectors from scratch instead of using a
pre-trained word embedding bank. Obtaining these word embeddings from scratch is a lot like
how an ANN would learn its correct weights, we will start with random word vectors; and as it
learns, it will add meaningful word vectors to its definition bank. By using the Keras library, we
will be able to easily implement the word embedding by adding it on as the initial layer to our



three ANNs. With the setup for the experiment discussed, I will now introduce the three
approaches experimented upon:

Recurrent Neural Network

A RNN treats words of a sentence as separate input occurring at time ‘t’and uses the
activation value at ‘t-1’, as an input in addition to the input at time ‘t’. Thus, one of the notable
features of a RNN is its advantage of sharing features learned across different positions of text. A
recurrent neural network can be thought of as multiple copies of the same network, each passing
a message to a successor. You can probably imagine how this type of architecture would be
useful for NLP. It can take entire sentences as input and relationally determine word’s meanings
by the context of other words.

We will implement the Simple RNN with the below code and specified parameters using Keras:

Long Short Term Memory Network

The LSTM network was explicitly created to avoid the long-term dependency problem
found in RNNs. The LSTM has the same control flow as RNN’s though: it processes the data
sequentially passing on information as it propagates forward. The key to LSTMs is its cell state,
which is like a conveyor belt that information is able to flow on unchanged. You can think of the
cell state as like the memory of the network. So because the cell state can carry information
throughout the sequence processing, in theory information from earlier time steps could be
carried all the way to the last time step, reducing the effects of short-term memory. In charge of
cell state though, are the LSTM’s gates. There are three specific types of gates within a LSTM
cell: a forget gate, an input game, and an output gate. The forget gate decides what information
should be thrown or kept away. The input gate decides which information should be added to the
cell state. And the output gate determines what the next hidden state should be.



We will implement the LSTM with the below code and specified parameters using Keras:

Convolutional Neural Network

CNNs treat data as spatial. Instead of neurons being connected to every neuron in the
previous layer like feed-forward networks, they are instead only connected to neurons close to it
and all have the same weight. This simplification in the connections means the network upholds
the spatial aspect of the dataset. The word convolutional refers to the filtering process that takes
place. A regular CNN is made up of multiple layers, with a couple of layers that make it unique:
the convolutional and pooling layers. The convolutional layer works by placing a filter over an
array, thus creating something called a convolved feature map. Then we have the pooling layer,
which downsamples the sampling size of a particular feature map, outputting a pooled feature
map. Now in NLP for CNNs, they can capture the spatial relationships in text by the word
embeddings. By analyzing the combined word embeddings of a sentence it can start to
understand the spatial relationships of the words and thus the sentiment of the sentence.



We will implement the CNN with the below code and specified parameters using Keras:

Results

Below are the results on the accuracies of different sentiment predictions within the three
models. I used a confusion matrix to display these results. So for our specific use of them, the
left side of the matrix are the true values and the bottom side is what our model predicted.

Simple RNN Model Results: Average Accuracy: 0.8255%. 78% of positive predictions were
actually positive. 78% of negative predictions were actually negative. 88% of neutral predictions
were actually neutral.



Single Layer LSTM Model Results: Average Accuracy: 0.8351%. 82% of positive predictions
were actually positive. 78% of negative predictions were actually negative. 88% of neutral
predictions were actually neutral.

1D Convolutional Model Results: Average Accuracy: 0.8326%. 80% of positive predictions
were actually positive. 77% of negative predictions were actually negative. 90% of neutral
predictions were actually neutral.

Discussion

Comparing these results to each other, we can see that LSTMs have the best average
accuracy by but a thin margin. We can also see that although LSTMs have the best average
accuracy, the CNN model has a higher score in accuracy for neutral sentiment prediction. And
although the Simple RNN doesn’t have a single sentiment prediction that’s the best among the
three, it is to mention that it was the fastest model to train.

Honestly though, these results leave much to be desired. There is a lack of difference
between the results of the three approaches tested to draw any grand conclusions. I do find these
very similar results quite surprising as other accuracy measurements like in [4] have their LSTM
network coming in with an accuracy of 72.5% and their CNN network coming in with an
accuracy of 66.7%. I suspect this wide variance in results between us comes down to our
implementation of the approaches. While they implemented their approaches by scratch, I used



the Keras library that will obviously be much more optimized. I also suspect that differences in
our datasets could lead to them having their average accuracy lower.

Conclusion

Based on only my results, my conclusion would be that among the three approaches
tested, they will produce very similar accuracy results and thus the difference in their
methodologies is kinda insignificant. However having studied the literature surrounding this
field, I believe that by a sizable degree in accuracy the LSTM should perform best, the CNN
performs next best, and the RNN performs worst by a significant margin. That is why I find my
results so surprising. It is also reasonable to assume that the reason why neutral sentiment
prediction had a significant higher accuracy than positive or negative sentiment prediction was
because the dataset had a much higher number of tweets labeled as neutral. Because of this, the
reason why my three models might be so close in value could be explained by the features found
in the used dataset. Things like comment length, slang, and label distribution could play a really
important role in which model approach would perform best.

Future Work

A good way to expand upon this research would be to add other approaches to the
comparison. Particularly in mind, I would like to experiment with the Self-Attention Network.
This network is very recently discovered and is making a lot of headway into natural language
processing. I find these networks interesting because of their ability to be parallelized, which
seems odd due to the sequential processing of text naturally abundant in this field. On top of
adding other approaches to compare against, it would be interesting to expand the metrics from
only accuracy to something more broad. Although accuracy is the obvious most important
metric, there are other things to consider like training time, resource cost, and industry viability.
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